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1 Mathematical Thinking

Most people with a bachelor’s degree when tasked to solve questions such as
presented below would associate this problem with the discipline of
mathematics.

Zeno bought three kilos of pineapple at fifty rupees a kilo, and five
cartons of milk at sixty rupees a carton. He hands a five hundred rupee
note to the shop keeper. How much money should he get back?

Such a problem would test the ability to model real life situations expressed
in the words and sentences of a natural language like English and transform
this information to a mathematical model to come up with an answer.

This involves three steps:

1. Abstraction: taking information from the real world like three kilos, five
cartons and sixty rupees, and transforming this into data that we can input into
the world of mathematics. In this particular case, the move involves using the
numbers 3, 50, 5, and 60 as inputs.

2. Calculation: using these inputs to arrive at { N AT AT oGRS 1
the output, thus solving the problem. This step INPUT —) OUTPUT
evaluates the ability to model real life situations 1
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using calculations that call for multiplication (3 . 2
X 50, 5x 60), addition (150 + 300), and REAL WORLD Fi 1
subtraction (500 — 450). Lgure 4

3. Stating the solution: requires return to the real world and stating the
solution in terms of words and sentences. In this example the answer would be
stated in English as fifty rupees.

Some individuals confronted with word problems such as the above example
are fearful of making mistakes when doing the arithmetic calculations
required to get a solution. For some reason they fear or even hate having to
make even the simplest of these computations and therefore, shy away from
solving such problems. This in some ways cripples them in their educational
experience and in real world situations as well. Perhaps traumatic
experiences learning math during their primary education gave them this
fear or dislike.

For those students who fear math calculations and other who are not
specialising in math or in a subject that requires applied math (e.g., physics,
engineering, or economics), what is valuable in the study of math are the
forms of thinking that it lends itself to.

Besides mathematical calculations, the concepts of mathematical thinking
and mathematical reasoning are important for processing information, no




matter what the subject matter or situation may be. Young learners need to
gain a sense of how this way of thinking is critical for their personal, public,
and professional lives even after graduation. For those who are specialising in
math and know the immense value of mathematical computations, they must
also realize that there is more to math than mere calculation. Calculation
after all, is only one of the components of thinking, the others being
1Imagination, insight, and intuition.

The questions we seek to explore in this article are:

1. What is mathematical thinking, as distinct from calculation?

2. How do we design a course in thinking like mathematicians?

3. Can math be taught in a way that it develops the ability to use
mathematical thinking in all aspects of education and life?

4. Would it make sense to introduce such a course as a compulsory

foundation course for all bachelor’s students (regardless of their
subject major) in a four-year undergraduate program?

The answers to these questions lead to an even more fundamental question:

5. What is the distinctive role of the knowledge system of mathematics in
contributing to the other knowledge systems present in the curricula for
undergraduate programs?

This question relates directly to the title of this series, “Designing and
Implementing Curricula for Higher Education,” and to the first article in the
series, “Knowledge and Knowledge Systems.”

2 Calculating

Calculating is a mechanical process of reasoning that requires an input and
yields a specific output (typically numerical), regardless of who or what the
calculating agent is (whether a human or a machine); the output is always
the same.

In arithmetic, calculation is a mechanical process that takes a complex
numerical representation as the input to yield another representation as an
output. For instance:

Calculation Arithmetic Operation
To calculate: ((20 x (50)) — (108 + 18))/5
Input: 20x 50 =100 multiplication
108 + 18 =126 addition
100 — 126 = -26 subtraction
—26+5 =-5.2 division
Output: —5.2

Each of the arithmetic operations in this example is a general mechanical procedure that
follows specific rules. Addition, subtraction, multiplication, and division are
representative examples of these types of operations.

Typically, math taught to children is geared towards mastering the skills of knowing and
applying the rules (symbol manipulation), with little emphasis on an understanding of the
concepts behind the rules. And these skills are what students are evaluated on.
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For instance, only rarely do students raise the question why the product of two negative
numbers is a positive number, while the sum of two negative numbers remains a negative
number.

For instance, to calculate the product of multiplying 35 by 9, we use the
following steps:

Step A 35 Right-align the numerals vertically.
x 9
Step B 5x9=45 Using multiplication tables, multiply the top numeral,
3x9=27 one digit at a time, from the right, by each digit of the
bottom numeral, starting from the right.
Step C 35
x9 Align the outputs of Step 2 as shown and add them to
45 [9x5] | get the final output.
+ 27 [9x3]
_ 315

What the steps show is that: 35 x 9 = 315.

Central to the understanding of such procedures is the understanding of the
formal system of equations that use the equality symbol ‘=". An equation is a
formal expression of the form:

X=Y

The variables X and Y represent the structure of an entity, (e.g., 35x9), and
the symbol = says that the numerical value of X is the same as the numerical
value of Y. For instance, the equation “(5x (10 — 3)) = 35” says that the
numerical value on both sides of the equality symbol is 35.

Equations are governed by principles such as the following:
Transitivity: If: X=Y

and: Y

then: X

Transposition: If: X

then: Y

Such principles are supplemented by procedural rules for operations, e.g.,
Substitution: If the input has: X=Y
and: Y=Z

then: in X =Y, replace the Y with Z.

noan
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That should give a sense of what we mean by arithmetic calculations using
the formal language of equations.

3. Reasoning

Reasoning always has a set of premises, and a legitimate conclusion that
follows from them. Calculation is a specific form of mechanical formal
numerical reasoning, though not all forms of reasoning involve numbers or
mathematics.

Consider the following example of what is called a syllogism:



Premise 1: Butterflies are insects.
Premise 2: Zeno was a butterfly.
Conclusion: Therefore, Zeno was an insect.

Syllogism is a special case of reasoning with categories. The syllogistic model
of reasoning is composed of two premises and a conclusion:

~ a major premise that expresses a subcategory relation (e.g., Butterflies
are a subcategory of insects);

~ a minor premise that expresses a category membership relation (e.g.,
Zeno was a member of the category of butterflies);

~ a conclusion derived from these two premises (e.g., Zeno was a member
of the category of insects.)

In what we may call extended syllogism, there can be multiple subcategory
statements:

Premise 1: Animals are multicellular.
Premise 2: Vertebrates are animals.

Premise 3: Mammals are vertebrates.
Premise 4: Zeno was a mammal.

Conclusion: Therefore, Zeno was multicellular.

To turn to another form of reasoning, consider the following example of the
model of implicational reasoning, that employs premises of the form if X
(is true), then Y (is true):

Premise 1: If Zeno was a butterfly, then Aristotle loved ice-cream.
Premise 2: Zeno was a butterfly.
Conclusion: Therefore, Aristotle loved ice-cream.

To take another example, consider causal reasoning that employs premises
of the form: X causes Y.

Reasoning from Cause to Effect

Causal Generalisation: Fire causes smoke.
A particular Observation: We see fire on that hill now.
Conclusion: Therefore, there is smoke on that hill now

Unlike (extended) syllogistic reasoning and implicational reasoning, causal
reasoning allows us to make inferences in both directions: from cause to effect
and from effect to cause. Here is an example:

Reasoning from Effect to Cause

Causal Generalisation: Fire causes smoke.

A particular Observation: We see smoke on that hill now.

Conclusion: Therefore, unless there is an alternative cause, we
conclude that there is fire on that hill now.

The purpose of the discussion above section was to give readers a feel for the
concept of reasoning and the various forms it can take. Although reasoning is
central to all forms of academic knowledge, inquiry, and critical thinking, our
aim at this time was not to help them develop their capacity to engage in
reasoning.



4. Constructing Mathematical Theories

4.1 Reasoning from Definitions

We chose the title of this article, “Mathematics without Calculations,”
to emphasise the idea that at the heart of mathematical thinking are
definitions, axioms, proofs, and theorems, and that calculation becomes
relevant only after the conceptual structure of the theory has been
expressed as a formal sructure.

The idea of mathematics without calculation would shock not only
school students, but those specialising in mathematics in higher
education programs, and perhaps even many who identify themselves
as mathematicians. It is designed to provide students with the tools to
develop mathematical thinking as part of higher order cognition (HOC);
this idea provides a glimpse into a different vision of higher education

Here 1s an activity that illustrates that vision:

Define triangles to prove that straight-angled triangles do not exist,
then define triangles to prove that straight-angled triangles do exist.

This is a task we have tried out successfully with eighth grade students,
as well as Year-1 undergraduate students. It is important to bear in
mind that at the very outset of engaging with the task, we must define
the concepts of angle, straight angle, triangle, and straight-angled
triangle.

Here is a possible definition of the concept of angle:
ANGLE (DEF): Angle is the magnitude of rotation at a vertex.
VERTEX (DEF): A Vertex is a joint between two lines.

Suppose we have two lines AB and C

BC joined together at C as in Fig. 2: /\

Imagine line CA rotating around C

such that it lies on top of CB. A B| Figure 2

The magnitude of that rotation is angle ACB.

If ine CA rotates around C until it returns to its initial position, we get
a full rotation. We can now define a right angle and a straight straight
as follows:

RIGHT ANGLE (DEF): A right angle is one quarter of a full rotation.

STRAIGHT ANGLE (DEF): A straight angle is half of a full rotation.

This means that a straight angle is the sum of two right angles.

To say whether or not straight-angled triangles exist, we also need to
define the concept of ‘triangle’. Students would likely define it as:

TRIANGLE (DEF): A triangle is a geometric object with three vertices
and three straight line segments.



If they do come up with this definition, we ask

them if Fig. 3 would constitute a triangle. ; 7
Fig. 3 has three vertices and three straight Figure 3

line segments. But it does not constitute a triangle. Hence, we need to
revise the definition.

TRIANGLE (DEF: REV 1) A triangle is a shape with three vertices,
and three straight line segments connecting them.

We now return to our question: Do straight-angled triangles exist?

Take three straight lines AC,
CB, and CA, configured as in
Fig. 4:

A g B
e Figure 4

Finally, what is a straight-angled triangle?

STRAIGHT-ANGLED TRIANGLE (DEF) A straight-angled triangle is a
triangle in which one of the angles is a straight angle.

Given this definition, it follows that Fig. 4 is indeed a straight-angled
triangle. It has three straight lines (AC, CB, and BA) connecting three
vertices (A, B, and C), where angle ACB is a straight angle.

Now, most students may have the intuition that ACB is not a triangle,
probably because two of its angles have zero magnitude. But our
definition of triangles does not say anything about not allowing zero
angles, thereby disallowing straight angles. To align their definition
with their judgment, they need to revise their definition of a triangle:

TRIANGLE (DEF: REV 2) A triangle is a shape with three non-
colinear vertices, and three straight line segments
connecting them.

In a straight-angled triangle, the three vertices are colinear. So, our
revised definition of triangles forbids the existence of such triangles.
Hence straight-angled triangles do not exist.

What we have demonstrated here is the logical contradiction between
the definition of triangles, as in DEF-REV 1, and the judgement that the
representation in Fig. 4 is not a triangle. Given the principle that logical
contradictions are prohibited in a body of knowledge (including in a
theory), it follows that we must revise either the definition or the
judgement.

It is important to note that the knowledge system of mathematics does
not tell us whether it is the definition or the judgement, or both, that
must be revised.

4.2 Reasoning from Axioms

A postulate is what we assume as a concept or a proposition of a theory.
Both definitions and axioms are instances of postulates. Having seen an
extended example of reasoning from definitions, it would be appropriate
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to look at an example of reasoning from axioms. For this, we will use a
version of postulates associated with parallel lines, what are called
parallel postulates.

Given two straight lines, our intuition — coming from what we have learnt
from Euclidean geometry in our school textbooks — says that when extended
on either side, they may either not intersect (as in Fig. 5a), or intersect on one
of the sides (as in Fig. 5b), but not on both sides. The two lines are parallel if
and only if they do not intersect.

G
Cr——— s> e 3
o 3

Figure 5a Figure 5b

Let us state as an axiom our intuition that two straight lines cannot intersect
on both sides:

Axion A: No two straight lines, even when extended indefinitely, can
intersect at two distinct points.

Contrary to what our intuition tells us, let us assume that they do intersect at
two points, and state this as an alternative axiom:

Axiom B: Any two straight lines when extended, intersect at two distinct
points.

The choice of Axiom A results in a geometry of flat surfaces. The Euclidean
Geometry presented in school textbooks is an example of Flat Surface
Geometry (FSG). The choice of Axiom B results in a geometry of spherical
surfaces. FSG and SSG yield distinct theorems. To take an example, consider
the sum of angles in a triangle. In FSG, we can prove that the sum of angles
in a triangle is two right angles. Anyone who has completed ten years of
school education is familiar with this theorem under the name Angle Sum
Theorem. In SSG, on the other hand, the sum of angles in a triangle is more
than two right angles, up to three right angles.

Here is a way of understanding the SSG theorem. Imagine that you are
travelling in a straight line on the surface of the earth from point A on the
equator to point B at the North Pole, describing line AB. At the North pole,
you change your direction, and travel in a straight line perpendicular to AB,
until you are at the equator. Call it point C, forming a straight line BC. Now
you change your direction again, and travel along the equator to point A. Line
CA will be perpendicular to line BC. Each of the angles ABC, BCA, and CAB
in triangle ABC will be a right angle, making the sum three right angles.

If you find 1t difficult to imagine what is described above, try this. Take a
sweet lime (moosambi) and cut it through the center. You now have two
hemispheres, with a flat cross section. Take one of the hemispheres and cut it
in such a way that the new cross section is perpendicular to the earlier one.
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You now have two pieces. Cut one of them, such that the new cross section is
perpendicular to both the previous ones. If you examine one of the pieces, you
will see a triangular curved surface, where each of the angles is a right angle.
So, the sum of angles of that triangle will be three right angles.

We are not going to prove the conjectures in FSG or SSG, to establish them as
theorems in their respective geometries, but you should now be able to
understand the conjectures.

4.3 Reasoning from Postulates

In Section 7 of our article, ‘From Experience to Knowledge,” (Episode 2 in this
series in KSHEC’s Higher Education Matters, Volume 1, Issue #7), we said
that a theory is composed of:

A set of postulates (definitions, axioms/laws).

A set of conclusions (called theorems in mathematics,
and predictions in science); and

A set of derivations of conclusions from postulates (called proofs
in mathematics).

The form of mathematical reasoning that derives conclusions from the
postulates of the theory is called classical deductive reasoning. This
includes reasoning with categories and implicational reasoning, among
others.

We now turn to the challenge of helping undergraduate students to construct
mathematical theories without necessarily using numerical calculations, but
providing adequate practice in reasoning to derive theorems.

4.4 Matchstick Geometry

Going back to mathematical thinking without mathematical calculation, we
need to have an understanding of theory construction in pure mathematics,
and of the use of that theory to model phenomena in applied mathematics
(including science, engineering, and technology). In this article, we only deal
with pure mathematics.

To exemplify theory construction, we will use what is called Matchstick
Geometry (MG). This form of geometry is ideal for helping students to get an
intuitive feel for what it is like to construct a mathematical theory, and to
give them a glimpse into what is distinctive about the knowledge system of
mathematics.

Consider the representation of a matchstick

in Fig. 6 . :
in Fig. 6. Figure 6

In this figure:
the stick of the matchstick is represented by the straight line, which
represents a straight line segment in the geometry; and
the coloured tip of the matchstick is represented by the black dot,
which represents what we call a point in geometry.



Let us ask a question about such line segments with a point at one end:

Q1: Isit possible to construct an equilateral triangle with such
geometric straight line segments?

If we consider the physical world we live in, with matchboxes and

matchsticks, the answer i1s obviously yes, and
the result of that configuration of matchsticks v
would look like Fig. 7: Figure 7

Fig. 7 1s how we would represent the abstract geometric figure we call
‘equilateral triangle’.

Let us take another question:

Q2: Isit possible to put together equilateral triangles to construct a
regular hexagon with such geometric straight line segments?

To answer this question, eighth s s . .
grade students may put together six

equilateral triangles as in Fig. 8, ¢ . . < ) »
and then remove the radius sticks v Y Y ¥
such that the result is as in Fig. 9. Figure 8 Figure 9

We must acknowledge that what we have sketched above is only the
beginning of an answer to the question we raised. To answer the question
satisfactorily, we need to understand the definitions of equilateral
triangles, polygons, regular polygons, and hexagons within MG. Those
whose education in mathematics is restricted to Euclidean geometry would
require considerable assistance in meeting that challenge.

Yet another question is:

Q3: The distance from the center of the hexagon to the vertices has the
length of a matchstick.
Can this hexagon be considered a circle in MG?

Most readers are likely to say that such a hexagon is not a circle. But the
question is not whether it looks to us like a circle, but whether the conjecture
(or its contradiction) follows logically from the postulates of the theory.

To do that, we need to set up postulates on this abstract world. Suppose we
begin with the following postulates:

P-1: Points have zero magnitude. [In a two-dimensional geometry, this
means that points have no length or breadth, following Euclid.]

P-2. Lines have length, but no breadth. [Faithful to Euclid.]
Now comes the departure from Euclidean Geometry:

P-3: The distance between adjacent points on a dimension is fixed.
P-4: The line between two adjacent points is an atomic line.

P-5: A composite line is composed of atomic lines, such that when two
atomic lines join, there is only one point at the joint.
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P1-P5 constitute the heart of Matchstick Geometry. Think of matchsticks as
atomic lines that can be combined to form composite lines (P-5). The length of
the matchstick is the length of the atomic line (P-4), and hence, in MG, all
atomic lines have the same length. We also need to add:

A. An atomic line has only one point (at one of the two ends).
B. A circle (i.e., a circular finite line) is a composite line.

C. The length of a composite line can be defined as the sum of the atomic
lines it 1s composed of.

Given the above, we can ask:

1. Is a circle a regular polygon?
Prove that the answer is YES in MG, and NO in Euclidean geometry.

2. A square is a rectangle with equal sides. Do squares exist in MG?
Prove your answer, whether yes or no.

3. In Euclidean geometry, any line can be bisected. What about in MG?
Prove your answer.

4. Do the following shapes exist in MG? Propose and prove conjectures:
a. Right-Angled Triangles.
b. Straight-Angled Triangles
c. Quadrilaterals that are not squares.

5. Can every shape that exists in Euclidean geometry exist in MG?
Prove your answer.

Now, answering (4a) would require a bit of help:

There are indeed right angled triangles in MG, in which the hypotenuse (the
side opposite the right angle) of a right angled triangle follows the theorem
that says that the square of the hypotenuse is equal to the sum of the squares
of the sides adjacent to the right angle. For instance, if the hypotenuse is 5
(whose square 1s 25), one side adjacent to the right angle is 4 (whose square is
16), and the other side is 3 (whose square is 9), so that we get 25 =9 + 16.

Such a triangle is possible in MG. But can we make a right angle triangle
whose sides adjacent to the right angle are four each, giving us an isosceles
triangle? Try constructing such a triangle in MG.

Even though the previous sections have been talking mostly about reasoning,
it 1s important to bear in mind that mathematical thinking is not just
reasoning or formal logic. It crucially involves other mental capacities such as
those of postulating definitions and axioms, abstracting, generalising,
developing and recognising insight, and intuition. This is true even in the
case of discovering proofs in pure mathematics and applying theorems in
applied mathematics.

A word of caution. The theory of matchstick geometry developed in this
section 1s that of a toy theory for explanatory purposes. It cannot do many
things that a professional mathematician would want to do. Our intention is
not to give a full-fledged theory, but simply to provide a feel for what it is like
to construct a theory in mathematics.
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5 Summary

What we have outlined in this article is thinking and calculating as two
important aspects of mathematical inquiry. Of these, making numerical
calculations using representations of numerals and the rules governing
arithmetic operations on the numerals is what we are taught in school as
mathematics. The journey that we have undertaken in this article is to walk
with the reader through other part of mathematics which we believe to be the
core of mathematical thinking in pure mathematics. We hope that the
journey has given you a feel for what the knowledge system of mathematics
shares with other systems of academic knowledge, and what distinguishes it
from them.
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