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MATHEMATICS WITHOUT CALCULATIONS 
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1 Mathematical Thinking   
Most people with a bachelor’s degree when tasked to solve questions such as 
presented below would associate this problem with the discipline of 
mathematics.  

Zeno bought three kilos of pineapple at fifty rupees a kilo, and five 
cartons of milk at sixty rupees a carton. He hands a five hundred rupee 
note to the shop keeper. How much money should he get back? 

Such a problem would test the ability to model real life situations expressed 
in the words and sentences of a natural language like English and transform 
this information to a mathematical model to come up with an answer.  
This involves three steps: 
1. Abstraction: taking information from the real world like three kilos, five 

cartons and sixty rupees, and transforming this into data that we can input into 
the world of mathematics. In this particular case, the move involves using the 
numbers 3, 50, 5, and 60 as inputs.  

2. Calculation: using these inputs to arrive  at 
the output, thus solving  the problem. This step 
evaluates the ability to model real life situations 
using calculations that call for multiplication (3 
x 50, 5 x 60), addition (150 + 300), and 
subtraction (500 – 450). Figure 1 

3. Stating the solution: requires return to the real world and stating the 
solution in terms of words and sentences. In this example the answer would be 
stated in English as fifty rupees. 

Some individuals confronted with word problems such as the above example 
are fearful of making mistakes when doing the arithmetic calculations 
required to get a solution. For some reason they fear or even hate having to 
make even the simplest of these computations and therefore, shy away from 
solving such problems. This in some ways cripples them in their educational 
experience and in real world situations as well. Perhaps traumatic 
experiences learning math during their primary education gave them this 
fear or dislike.  
For those students who fear math calculations and other who are not 
specialising in math or in a subject that requires applied math (e.g., physics, 
engineering, or economics), what is valuable in the study of math are the 
forms of thinking that it lends itself to.  
Besides mathematical calculations, the concepts of mathematical thinking 
and mathematical reasoning are important for processing information, no 
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matter what the subject matter or situation may be. Young learners need to 
gain a sense of how this way of thinking is critical for their personal, public, 
and professional lives even after graduation. For those who are specialising in 
math and know the immense value of mathematical computations, they must 
also realize that there is more to math than mere calculation. Calculation 
after all, is only one of the components of thinking, the others being 
imagination, insight, and intuition. 
The questions we seek to explore in this article are:  
1. What is mathematical thinking, as distinct from calculation?  
2. How do we design a course in thinking like mathematicians?   
3. Can math be taught in a way that it develops the ability to use  

mathematical thinking in all aspects of education and life?  
4. Would it make sense to introduce such a course as a compulsory 

foundation course for all bachelor’s students (regardless of their 
subject major) in a four-year undergraduate program? 

The answers to these questions lead to an even more fundamental question:  
5. What is the distinctive role of the knowledge system of mathematics in 

contributing to the other knowledge systems present in the curricula for 
undergraduate programs?  

This question relates directly to the title of this series, “Designing and 
Implementing Curricula for Higher Education,” and to the first article in the 
series, “Knowledge and Knowledge Systems.” 

2  Calculating 
Calculating is a mechanical process of reasoning that requires an input and 
yields a specific output (typically numerical), regardless of who or what the 
calculating agent is (whether a human or a machine); the output is always 
the same.  
In arithmetic, calculation is a mechanical process that takes a complex 
numerical representation as the input to yield another representation as an 
output. For instance:  

Calculation Arithmetic Operation 
To calculate: ((20 x (50)) – (108 + 18))/5  

Input: 20 x  50 = 100 
  108 + 18 = 126 
  100 – 126 = –26 
 –26 ÷ 5  = –5.2 

multiplication 
addition 
subtraction 
division 

Output:  –5.2  
Each of the arithmetic operations in this example is a general mechanical procedure that 
follows specific rules. Addition, subtraction, multiplication, and division are 
representative examples of these types of operations. 
Typically, math taught to children is geared towards mastering the skills of knowing and 
applying the rules (symbol manipulation), with little emphasis on an understanding of the 
concepts behind the rules. And these skills are what students are evaluated on. 
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For instance, only rarely do students raise the question why the product of two negative 
numbers is a positive number, while the sum of two negative numbers remains a negative 
number.  

For instance, to calculate the product of multiplying 35 by 9, we use the 
following steps: 

Step A    35 
x   9 

Right-align the numerals vertically. 

Step B 5 x 9 = 45 
3 x 9 = 27 

Using multiplication tables, multiply the top numeral, 
one digit at a time, from the right, by each digit of the 
bottom numeral, starting from the right. 

Step C       35 
    x 9   
      45 [9x5] 
 + 27  [9x3]     
    315 

 
Align the outputs of Step 2 as shown and add them to 
get the final output. 

 What the steps show is that:   35 x 9 = 315. 
Central to the understanding of such procedures is the understanding of the 
formal system of equations that use the equality symbol ‘=’. An equation is a 
formal expression of the form:  
  X = Y 
The variables X and Y represent the structure of an entity, (e.g., 35x9), and 
the symbol ‘=’ says that the numerical value of X is the same as the numerical 
value of Y. For instance, the equation “(5x (10 – 3)) = 35” says that the 
numerical value on both sides of the equality symbol is 35.  
Equations are governed by principles such as the following:  
 Transitivity:  If: X = Y  

 and: Y = Z 
 then: X = Z  

 Transposition:  If: X = Y  
  then: Y = X  
Such principles are supplemented by procedural rules for operations, e.g.,  
 Substitution:  If the input has: X = Y 
  and:    Y = Z  
  then:    in X = Y, replace the Y with Z.  
That should give a sense of what we mean by arithmetic calculations using 
the formal language of equations.  

3. Reasoning  
Reasoning always has a set of premises, and a legitimate conclusion that 
follows from them. Calculation is a specific form of mechanical formal 
numerical reasoning, though not all forms of reasoning involve numbers or 
mathematics.  
Consider the following example of what is called a syllogism: 
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 Premise 1: Butterflies are insects.  
 Premise 2: Zeno was a butterfly. 
 Conclusion: Therefore, Zeno was an insect. 

Syllogism is a special case of reasoning with categories. The syllogistic model 
of reasoning is composed of two premises and a conclusion:   

~ a major premise that expresses a subcategory relation (e.g., Butterflies 
are a subcategory of insects);  

~ a minor premise that expresses a category membership relation (e.g., 
Zeno was a member of the category of butterflies);  

~ a conclusion derived from these two premises (e.g., Zeno was a member 
of the category of insects.)   

In what we may call extended syllogism, there can be multiple subcategory 
statements:      
  Premise 1: Animals are multicellular. 

Premise 2: Vertebrates are animals.  
Premise 3: Mammals are vertebrates. 
Premise 4: Zeno was a mammal. 

 Conclusion: Therefore, Zeno was multicellular.  
To turn to another form of reasoning, consider the following example of the 
model of implicational reasoning, that employs premises of the form if X 
(is true), then Y (is true): 

Premise 1:  If Zeno was a butterfly, then Aristotle loved ice-cream.  
Premise 2: Zeno was a butterfly. 

 Conclusion: Therefore, Aristotle loved ice-cream.  
To take another example, consider causal reasoning that employs premises 
of the form: X causes Y.  

Reasoning from Cause to Effect  
 Causal Generalisation:   Fire causes smoke.  
 A particular Observation: We see fire on that hill now.  
 Conclusion:  Therefore, there is smoke on that hill now  

Unlike (extended) syllogistic reasoning and implicational reasoning, causal 
reasoning allows us to make inferences in both directions: from cause to effect 
and from effect to cause. Here is an example: 

Reasoning from Effect to Cause  
 Causal Generalisation:   Fire causes smoke.  
 A particular Observation: We see smoke on that hill now.  
 Conclusion: Therefore, unless there is an alternative cause, we   
     conclude that there is fire on that hill now.  

The purpose of the discussion above section was to give readers a feel for the 
concept of reasoning and the various forms it can take. Although reasoning is   
central to all forms of academic knowledge, inquiry, and critical thinking, our 
aim at this time was  not to help them develop their capacity to engage in 
reasoning. 
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4. Constructing Mathematical Theories  
4.1 Reasoning from Definitions   
We chose the title of this article, “Mathematics without Calculations,”  
to emphasise the idea that at the heart of mathematical thinking are  
definitions, axioms, proofs, and theorems, and that calculation becomes 
relevant only after the conceptual structure of the theory has been 
expressed as a formal sructure.   
The idea of mathematics without calculation would shock not only 
school students, but those specialising in mathematics in higher 
education programs, and perhaps even many who identify themselves 
as mathematicians. It is designed to provide students with the tools to 
develop mathematical thinking as part of higher order cognition (HOC); 
this idea provides a glimpse into a different vision of higher education 

Here is an activity that illustrates that vision:  
Define triangles to prove that straight-angled triangles do not exist; 
then define triangles to prove that straight-angled triangles do exist.  

This is a task we have tried out successfully with eighth grade students, 
as well as Year-1 undergraduate students. It is important to bear in 
mind that at the very outset of engaging with the task, we must define 
the concepts of angle, straight angle, triangle, and straight-angled 
triangle.  
Here is a possible definition of the concept of angle: 

ANGLE (DEF): Angle is the magnitude of rotation at a vertex. 
VERTEX (DEF): A Vertex is a joint between two lines.   

Suppose we have two lines AB and 
BC joined together at C as in Fig. 2: 
Imagine line CA rotating around C 
such that it lies on top of CB.      Figure 2 
The magnitude of that rotation is angle ACB. 
If line CA rotates around C until it returns to its initial position, we get 
a full rotation. We can now define a right angle and a straight straight 
as follows:  

RIGHT ANGLE (DEF): A right angle is one quarter of a full rotation.  
STRAIGHT ANGLE (DEF): A straight angle is half of a full rotation.  

This means that a straight angle is the sum of two right angles.  
To say whether or not straight-angled triangles exist, we also need to 
define the concept of ‘triangle’. Students would likely define it as: 

TRIANGLE (DEF): A triangle is a geometric object with three vertices 
and three straight line segments. 
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If they do come up with this definition, we ask 
them if Fig. 3 would constitute a triangle.  
Fig. 3 has three vertices and three straight     Figure 3 
line segments. But it does not constitute a triangle. Hence, we need to 
revise the definition.  

TRIANGLE (DEF: REV 1) A triangle is a shape with three vertices, 
and three straight line segments connecting them.   

We now return to our question: Do straight-angled triangles exist?  

Take three straight lines AC, 
CB, and CA, configured as in 
Fig. 4:    Figure 4 

Finally, what is a straight-angled triangle?  
STRAIGHT-ANGLED TRIANGLE (DEF) A straight-angled triangle is a 

triangle in which one of the angles is a straight angle.  
Given this definition, it follows that Fig. 4 is indeed a straight-angled 
triangle. It has three straight lines (AC, CB, and BA) connecting three 
vertices (A, B, and C), where angle ACB is a straight angle.  
Now, most students may have the intuition that ACB is not a triangle, 
probably because two of its angles have zero magnitude. But our 
definition of triangles does not say anything about not allowing zero 
angles, thereby disallowing straight angles. To align their definition 
with their judgment, they need to revise their definition of a triangle: 

TRIANGLE (DEF: REV 2) A triangle is a shape with three non-
colinear vertices, and three straight line segments 
connecting them.   

In a straight-angled triangle, the three vertices are colinear. So, our 
revised definition of triangles forbids the existence of such triangles. 
Hence straight-angled triangles do not exist.  
What we have demonstrated here is the logical contradiction between 
the definition of triangles, as in DEF-REV 1, and the judgement that the 
representation in Fig. 4 is not a triangle. Given the principle that logical 
contradictions are prohibited in a body of knowledge (including in a 
theory), it follows that we must revise either the definition or the 
judgement.  
It is important to note that the knowledge system of mathematics does 
not tell us whether it is the definition or the judgement, or both, that 
must be revised.  

4.2 Reasoning from Axioms 
A postulate is what we assume as a concept or a proposition of a theory. 
Both definitions and axioms are instances of postulates. Having seen an 
extended example of reasoning from definitions, it would be appropriate 
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to look at an example of reasoning from axioms. For this, we will use a 
version of postulates associated with parallel lines, what are called 
parallel postulates. 
Given two straight lines, our intuition — coming from what we have learnt 
from Euclidean geometry in our school textbooks — says that when extended 
on either side, they may either not intersect (as in Fig. 5a), or intersect on one  
of the sides (as in Fig. 5b), but not on both sides. The two lines are parallel if 
and only if they do not intersect.  

 
 Figure 5a Figure 5b 
Let us state as an axiom our intuition that two straight lines cannot intersect 
on both sides: 

Axion A: No two straight lines, even when extended indefinitely, can 
intersect at two distinct points.  

Contrary to what our intuition tells us, let us assume that they do intersect at 
two points, and state this as an alternative axiom:  

Axiom B: Any two straight lines when extended, intersect at two distinct 
points.  

The choice of Axiom A results in a geometry of flat surfaces. The Euclidean 
Geometry presented in school textbooks is an example of Flat Surface 
Geometry (FSG). The choice of Axiom B results in a geometry of spherical 
surfaces. FSG and SSG yield distinct theorems. To take an example, consider 
the sum of angles in a triangle. In FSG, we can prove that the sum of angles 
in a triangle is two right angles. Anyone who has completed ten years of 
school education is familiar with this theorem under the name Angle Sum 
Theorem. In SSG, on the other hand, the sum of angles in a triangle is more 
than two right angles, up to three right angles.  
Here is a way of understanding the SSG theorem. Imagine that you are 
travelling in a straight line on the surface of the earth from point A on the 
equator to point B at the North Pole, describing line AB. At the North pole, 
you change your direction, and travel in a straight line perpendicular to AB, 
until you are at the equator. Call it point C, forming a straight line BC. Now 
you change your direction again, and travel along the equator to point A. Line 
CA will be perpendicular to line BC. Each of the angles ABC, BCA, and CAB 
in triangle ABC will be a right angle, making the sum three right angles.  
If you find it difficult to imagine what is described above, try this. Take a 
sweet lime (moosambi) and cut it through the center. You now have two 
hemispheres, with a flat cross section. Take one of the hemispheres and cut it 
in such a way that the new cross section is perpendicular to the earlier one. 
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You now have two pieces. Cut one of them, such that the new cross section is 
perpendicular to both the previous ones. If you examine one of the pieces, you 
will see a triangular curved surface, where each of the angles is a right angle.  
So, the sum of angles of that triangle will be three right angles.  
We are not going to prove the conjectures in FSG or SSG, to establish them as 
theorems in their respective geometries, but you should now be able to 
understand the conjectures.  

4.3 Reasoning from Postulates   
In Section 7 of our article, ‘From Experience to Knowledge,’ (Episode 2 in this 
series in KSHEC’s Higher Education Matters, Volume 1, Issue #7), we said 
that a theory is composed of: 

A set of postulates (definitions, axioms/laws).  
A set of conclusions (called theorems in mathematics,  
      and predictions in science); and 
A set of derivations of conclusions from postulates (called proofs    
      in mathematics).   

The form of mathematical reasoning that derives conclusions from the 
postulates of the theory is called classical deductive reasoning. This 
includes reasoning with categories and implicational reasoning, among 
others.  
We now turn to the challenge of helping undergraduate students to construct 
mathematical theories without necessarily using numerical calculations, but 
providing adequate practice in reasoning to derive theorems.   

4.4 Matchstick Geometry   
Going back to mathematical thinking without mathematical calculation, we 
need to have an understanding of theory construction in pure mathematics, 
and of the use of that theory to model phenomena in applied mathematics 
(including science, engineering, and technology). In this article, we only deal 
with pure mathematics.  
To exemplify theory construction, we will use what is called Matchstick 
Geometry (MG). This form of geometry is ideal for helping students to get an 
intuitive feel for what it is like to construct a mathematical theory, and to 
give them a glimpse into what is distinctive about the knowledge system of 
mathematics.  
Consider the representation of a matchstick 
in Fig. 6.    Figure 6 
In this figure: 
 the stick of the matchstick is represented by the straight line, which 

represents a straight line segment in the geometry; and  
 the coloured tip of the matchstick is represented by the black dot,  
  which represents what we call a point in geometry.  
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Let us ask a question about such line segments with a point at one end: 
Q1: Is it possible to construct an equilateral triangle with such 

geometric straight line segments?  
If we consider the physical world we live in, with matchboxes and 
matchsticks, the answer is obviously yes, and 
the result of that configuration of matchsticks 
would look like Fig. 7:         Figure 7 
Fig. 7 is how we would represent the abstract geometric figure we call 
‘equilateral triangle’.  
Let us take another question:  

Q2: Is it possible to put together equilateral triangles to construct a 
regular hexagon with such geometric straight line segments?  

To answer this question, eighth 
grade students may put together six 
equilateral triangles as in Fig. 8,  
and then remove the radius sticks 
such that the result is as in Fig. 9.   

Figure 8 
 

Figure 9 

We must acknowledge that what we have sketched above is only the 
beginning of an answer to the question we raised. To answer the question 
satisfactorily, we need to understand the definitions of equilateral 
triangles, polygons, regular polygons, and hexagons within MG. Those 
whose education in mathematics is restricted to Euclidean geometry would 
require considerable assistance in meeting that challenge. 
Yet another question is: 

Q3: The distance from the center of the hexagon to the vertices has the 
length of a matchstick.  

 Can this hexagon be considered a circle in MG? 
Most readers are likely to say that such a hexagon is not a circle. But the 
question is not whether it looks to us like a circle, but whether the conjecture 
(or its contradiction) follows logically from the postulates of the theory.  
To do that, we need to set up postulates on this abstract world. Suppose we 
begin with the following postulates:  

P-1: Points have zero magnitude. [In a two-dimensional geometry, this 
means that points have no length or breadth, following Euclid.] 

P-2. Lines have length, but no breadth. [Faithful to Euclid.]  
Now comes the departure from Euclidean Geometry:  

P-3: The distance between adjacent points on a dimension is fixed.  
P-4: The line between two adjacent points is an atomic line.  
P-5: A composite line is composed of atomic lines, such that when two 

atomic lines join, there is only one point at the joint. 
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P1-P5 constitute the heart of Matchstick Geometry. Think of matchsticks as 
atomic lines that can be combined to form composite lines (P-5). The length of 
the matchstick is the length of the atomic line (P-4), and hence, in MG, all 
atomic lines have the same length. We also need to add:  

A. An atomic line has only one point (at one of the two ends).    
B. A circle (i.e., a circular finite line) is a composite line.  
C. The length of a composite line can be defined as the sum of the atomic 

lines it is composed of.  
Given the above, we can ask:  

1. Is a circle a regular polygon?  
 Prove that the answer is YES in MG, and NO in Euclidean geometry.  
2. A square is a rectangle with equal sides. Do squares exist in MG?  
 Prove your answer, whether yes or no. 
3. In Euclidean geometry, any line can be bisected. What about in MG?  

Prove your answer.  
4. Do the following shapes exist in MG? Propose and prove conjectures:  

a. Right-Angled Triangles. 
b. Straight-Angled Triangles  
c. Quadrilaterals that are not squares.  

5. Can every shape that exists in Euclidean geometry exist in MG?  
 Prove your answer. 

Now, answering (4a) would require a bit of help:  
There are indeed right angled triangles in MG, in which the hypotenuse (the 
side opposite the right angle) of a right angled triangle follows the theorem 
that says that the square of the hypotenuse is equal to the sum of the squares 
of the sides adjacent to the right angle. For instance, if the hypotenuse is 5 
(whose square is 25), one side adjacent to the right angle is 4 (whose square is 
16), and the other side is 3 (whose square is 9), so that we get 25 = 9 + 16.   
Such a triangle is possible in MG. But can we make a right angle triangle 
whose sides adjacent to the right angle are four each, giving us an isosceles 
triangle? Try constructing such a triangle in MG.  
Even though the previous sections have been talking mostly about reasoning, 
it is important to bear in mind that mathematical thinking is not just 
reasoning or formal logic. It crucially involves other mental capacities such as 
those of postulating definitions and axioms, abstracting, generalising, 
developing and recognising insight, and intuition. This is true even in the 
case of discovering proofs in pure mathematics and applying theorems in 
applied mathematics. 
A word of caution. The theory of matchstick geometry developed in this 
section is that of a toy theory for explanatory purposes. It cannot do many 
things that a professional mathematician would want to do. Our intention is 
not to give a full-fledged theory, but simply to provide a feel for what it is like 
to construct a theory in mathematics.  
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5 Summary  
What we have outlined in this article is thinking and calculating as two 
important aspects of mathematical inquiry. Of these, making numerical 
calculations using representations of numerals and the rules governing 
arithmetic operations on the numerals is what we are taught in school as 
mathematics. The journey that we have undertaken in this article is to walk 
with the reader through other part of mathematics which we believe to be the 
core of mathematical thinking in pure mathematics. We hope that the 
journey has given you a feel for what the knowledge system of mathematics 
shares with other systems of academic knowledge, and what distinguishes it 
from them.  
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